Bilbao Crystallographic Server arrow COREPRESENTATIONS PG

Irreducible corepresentations of the Magnetic Point Group -4 (N. 10.1.32)


Table of characters of the unitary symmetry operations


(1)
(2)
(3)
C1
C2
C3
C4
C5
C6
C7
C8
GM1
A
GM1
1
1
1
1
1
1
1
1
GM2
B
GM2
1
1
-1
-1
1
1
-1
-1
GM3
2E
GM3
1
-1
i
-i
1
-1
i
-i
GM4
1E
GM4
1
-1
-i
i
1
-1
-i
i
GM7
2E2
GM5
1
-i
-(1-i)2/2
-(1+i)2/2
-1
i
(1-i)2/2
(1+i)2/2
GM5
2E1
GM6
1
-i
(1-i)2/2
(1+i)2/2
-1
i
-(1-i)2/2
-(1+i)2/2
GM8
1E2
GM7
1
i
-(1+i)2/2
-(1-i)2/2
-1
-i
(1+i)2/2
(1-i)2/2
GM6
1E1
GM8
1
i
(1+i)2/2
(1-i)2/2
-1
-i
-(1+i)2/2
-(1-i)2/2
The notation used in this table is an extension to corepresentations of the following notations used for irreducible representations:
(1): Bradley CJ and Cracknell AP, (1972) The Mathematical Theory of Symmetry in Solids. Oxford: Clarendon Press.
(2): Bradley CJ and Cracknell AP, (1972) The Mathematical Theory of Symmetry in Solids. Oxford: Clarendon Press, based on Mulliken RS (1933) Phys. Rev. 43, 279-302.
(3): A. P. Cracknell, B. L. Davies, S. C. Miller and W. F. Love (1979) Kronecher Product Tables, 1, General Introduction and Tables of Irreducible Representations of Space groups. New York: IFI/Plenum, for the GM point.

Lists of unitary symmetry operations in the conjugacy classes

C1: 1
C2: 2001
C34+001
C44-001
C5d1
C6d2001
C7d4+001
C8d4-001

Matrices of the representations of the group

The antiunitary operations are written in red color
NMatrix presentationSeitz symbolGM1GM2GM3GM4GM5GM6GM7GM8
1
(
1 0 0
0 1 0
0 0 1
)
(
1 0
0 1
)
1
1
1
1
1
1
1
1
1
2
(
-1 0 0
0 -1 0
0 0 1
)
(
-i 0
0 i
)
2001
1
1
-1
-1
-i
-i
i
i
3
(
0 1 0
-1 0 0
0 0 -1
)
(
(1-i)2/2 0
0 (1+i)2/2
)
4+001
1
-1
i
-i
ei3π/4
e-iπ/4
e-i3π/4
eiπ/4
4
(
0 -1 0
1 0 0
0 0 -1
)
(
(1+i)2/2 0
0 (1-i)2/2
)
4-001
1
-1
-i
i
e-i3π/4
eiπ/4
ei3π/4
e-iπ/4
5
(
1 0 0
0 1 0
0 0 1
)
(
-1 0
0 -1
)
d1
1
1
1
1
-1
-1
-1
-1
6
(
-1 0 0
0 -1 0
0 0 1
)
(
i 0
0 -i
)
d2001
1
1
-1
-1
i
i
-i
-i
7
(
0 1 0
-1 0 0
0 0 -1
)
(
-(1-i)2/2 0
0 -(1+i)2/2
)
d4+001
1
-1
i
-i
e-iπ/4
ei3π/4
eiπ/4
e-i3π/4
8
(
0 -1 0
1 0 0
0 0 -1
)
(
-(1+i)2/2 0
0 -(1-i)2/2
)
d4-001
1
-1
-i
i
eiπ/4
e-i3π/4
e-iπ/4
ei3π/4
k-Subgroupsmag
Bilbao Crystallographic Server
http://www.cryst.ehu.es
Licencia de Creative Commons
For comments, please mail to
administrador.bcs@ehu.eus